
~ Pergamon 
S0021--8928 (96) 00029-9 

J. Appl MathsMechs, Vol. 60, No. 2, pp. 227-232, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0021-8928/96 $24.00+0.00 

ON THE THEORY OF LINEAR GYROSCOPIC SYSTEMSt 

A. A. Z E V I N  

Dnepropetrovsk 

(Received 23 February 1995) 

The behaviour of the oscillation frequencies of Hamiltonian systems when their stiffness and inertia are changed is reviewed. 
The number of frequencies of the first and second kind, expressed in terms of the number of positive and negative eigenvalues 
of the Hamiltonian, is found. It follows from these results, in particular, that Rayleigh's classical theorem only holds for gyroscopic 
systems when the numbe:r of its frequencies is equal to the number of frequencies of the system without gyroscopic forces. The 
degree of instability of a gyroscopic system when there are small dissipative forces is found; in a gyroscopically stabilized system, 
it is half the degree of styptic instability. © 1996 Elsevier Science Ltd. All rights reserved. 

1. Consider the linear gyroscopic system 

M~k + Gx + Cx = 0 (1.1) 

where x e / ~ ,  M and C are symmetric inertia and stiffness matrices, G is a skew symmetric gyroscopic 
force matrix and the matrix M is assumed to be positive definite (M > 0). 

Let ro <~ n be the number of positive eigenvalues of the matrix C. Then, when there are no gyroscopic 
forces (G = 0) the system has r0 vibrational frequencies too. By Rayleigh's theorem [1], the frequencies 
increase when there is an increase in the stiffness or a decrease in the inertia (that is, when there is an 
increase in the potential energy and a decrease in the kinetic energy). Rayleigh proved this theorem 
using perturbation theory: another well-known proof based on the minimax property of eigenvalues is 
due to Courant [2]. 

We shall present some results of an analysis and extension of this remarkable theorem. First, we note 
that the symmetry condition for the matrices M and C is essential; otherwise, as has been shown in [3], 

0 0 , for any frequency tok, an increase in C or a decrease in M can be found such that tok decreases. Rayleigh s 
theorem cannot therefore be extended to systems with non-conservational positional forces. It is easy 
to show that it is also necessary for the matrix M to be positive definite. 

The first attempt to extend Rayleigh's theorem to systems with gyroscopic forces [4] led to conclusions 
containing an error, which remained unnoticed in spite of the fact that the results continued to be used 
and discussed (for example, see [5]). We shall therefore explain the method proposed in [4]. 

Let  itok be an imaginary root of the characteristic equation and let x~ be the corresponding eigenvector, 
that is, 

9 ° 

(- to '~M + tto, G + C ) x ,  = 0 (1.2) 

We find by taking ~the scalar product of equality (1.2) and xk that tok satisfies the quadratic equation 

mkto 2 - g, to - c, = 0 (1.3) 

where mk = (Mx,, Xk), gk = (iGxk, x,) and ck = (Cxk, x,); (a, b) denotes the scalar product of the vectors 
a and b. 

Since M and C are. real symmetric matrices and the matrix iG is Hermitian, then ink, gk and ck are 
real numbers and, moreover, mk > 0 by virtue of the fact that M > 0. When account is taken of the 
fact that the roots of the characteristic equations are complex conjugates, it can be assumed that tok > 
0, that is, ok is identical with the positive root of Eq. (1.3). It can be shown that tok has a stationary 
value with respect to the components of the vector xk and the latter therefore cannot vary when there 
are variations in stiffiaess and inertia. 

We shall initially a,;sume that the system is statically stable (C > 0). The roots to' and to" of Eq. (1.3) 
are then of opposite ,;ign. Since -to'to"ck/mg increases with respect to Ck, and to' + to" = gk/mk does not 
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depend on Ck, the positive root to" = ta k increases as ck increases, that is, the stiffness increases. It can 
be shown in a similar manner than to k decreases as the inertia increases. 

We shall now assume that the system is statically unstable (there are negative eigenvalues among the 
eigenvalues of the matrix C). If, in this case, gk > 0, ck < 0 and g2g + 4ckrn~ > 0 for a certain vector Xk, 
then both of the roots co' and co" are positive. It can be shown, using the above arguments that, for an 
increase in the stiffness and a decrease in the inertia, the larger root increases and the smaller root 
decreases. Since it is unknown "a priori" to which of these roots a frequency tOk corresponds, it is 
impossible to draw any conclusion regarding its behaviour. This fact was not taken into account in [4] 
and the assertion which was made concerning the increase in the frequencies when the stiffness is 
increased is unfounded. We shall show that it is untrue in the general case. 

Let us now assume that the matrix C has p negative eigenvalues, the remaining eigenvalues being 
positive. We know [6] that, in the case of evenp,  the matrix G can be chosen in such a manner that all 
the roots of the characteristic equation 

det~M~. 2 + G~, + C = 0 (1.4) 

are pure imaginary (~.k = __.itok, k = 1 . . . .  , n), that is, there is gyroscopic stabilization. We shall now 
show that, in such a system, certain frequencies can decrease when C increases. 

Without loss of generality, we shall assume that M is the identity matrix and that C is a diagonal matrix 
(C = diag[cl . . . .  , cn]) and, moreover, that Ck < 0 when k ~< p and Ck > 0 when k > p. 

The free term in Eq. (1.4) is then equal to 

2 a 0 = to~to22...tan = det C = qc2...c,, (1.5) 

We put C(~t) = diag[cl + Ix, c2 . . . . .  cn] and then dao(ix)/dix = c 2 . . .  c n. In this product an odd number 
(p - 1) of factors c~ are negative while the remaining factors are positive. Hence, da0(ix)/dix < 0 and, con- 
sequently, dtoE(ix)/dix < 0 for a certain k. The matrix dC(IX)/dix -- diag[1, 0 . . . . .  0] is negative definite: it 
is clear that it can be made positive definite by means of a perturbation which may be as small as desired 
but which does not violate the inequality. Hence, when there is an increase in stiffness, individual frequencies 
of a gyroscopically stabilized system can decrease. It is shown below that such frequencies always exist. 

It has been shown by a rigorous solution of  a problem in [7] that Rayleigh's theorem can be extended 
to gyroscopic systems with a non-negative definite stiffness matrix (C I> 0). Another proof of this assertion 
has subsequently been obtained [8]. 

We shall now consider the more general Hamiltonian system 

J), = Ay (1.6) 

where y ~ R 2n, J is a non-singular skew symmetric matrix and A is a symmetric matrix. 
We know that, by making the substitution 

x=q, Mx=p, y=[q,p] (1.7) 

Equation (1.1) can be reduced to the form of (1.6) with 

A=II  o II  18, 
where In is the identity matrix of order n. We note that, if the matrix M decreases, then M q increases 
[9] and, hence, A increases when C increases and M decreases. 

In (1.6), le tA = A(IX) = A0 + gA1 andA1 > 0 (that is, A(ix) increases with respect to IX). If ~ is a 
simple root of the characteristic equation when tx = 0, then ~,k(~t) is an analytic function. The standard 
perturbation method procedure gives [10] 

arLk (----~)- = (AlYk'Yk) (1.9) 
dix Ila= o (JYk,Yk) 

where Yk = [~ ,  Pk] is the eigenvector corresponding to the eigenvalue ~ (AoYk = ~qc]Yk)- If the root 
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kk is multiple but simple elementary divisors of the matrix j-1A 0 correspond to it, then, by an 
appropriate choice of the vectors Yk, the values of d?k(ix)/dix when Ix = 0 are also determined by 
expressions (1.9). 

L e t  kk = ROk. Then ~.k(Ix) = imk(Ix). Since the numerator in (1.9) is positive (A 1 > 0), the sign of 
dtok(Ix)/dIx when Ix = 0 is identical with the sign of lk = i(Jyk, Yk) = (Aoyk, yk)/tOk. 

If A0 > 0, all the :roots are pure imaginary and all the elementary divisors of the matrix J--1A 0 are 
simple [10]. All the t~equencies tog therefore increase when A0 increases. Hence, Rayleigh's theorem 
holds for Hamiltonian systems with a positive definite Hamiltonian. Conversely, if A0 < 0, all the 
frequencies decrease whenA0 increases. 

In accordance with the classification introduced in [11], the vibrational frequencies ¢0k of a Hamiltonian 
system for which lk > 0 and lk < 0 are referred to as frequencies of the first and second kind, respectively. 
Hence, when the Hamiltonian becomes larger, frequencies of the first kind increase while frequencies 
of the second kind decrease. 

A Hamiltonian system with periodic coefficients 

Jx  = A ( t o t ,  Ix)x, 

A = A(tot, ix)= Ao(t0t) + ILAI (tot) 

(1.10) 

has been considered in [12]. In this system, the symmetric positive definite matricesA0(tot) andAl(0)t) 
are periodic with respect to t. It was proved that the critical frequencies of parametric resonance top(ix), 
p = 1, 2 , . . .  (which correspond to the limits of the domains of stability of Eq. (1.10)) increase with 
respect to IX; this result extends Rayleigh's theorem to parametrically excited systems. 

In this paper, we formulate the problem of the behaviour of free vibrations of the non-linear Hamil- 
tonian system 

Jx = Hx(x,ix) (1.11) 

when the Hamiltonian H is perturbed. It is assumed here that the Hessian H=, (x, IX) = II O2n/OxpOxk I1~ 
> 0 and 0H=t(x, IX)/a'IX > 0 (these inequalities are analogous to the conditionsA 0 > 0 andA1 > 0 in 
the linear case). Since, here, the oscillation frequencies depend on the total energy h, the latter was 
fixed (H(x, IX) = h). It was found that, in the general case, the frequency ok(h , ! x) cannot increase with 
respect to IX even in a system with a single degree of freedom. However, the inequality 3tok(h , IX)/OIX > 0 
holds for values ofh  at which to~(h, IX) is stationary with respect to h(3tok(h, Ix)/Oh = 0, that is, an assertion 
analogous to Rayleigla's theorem holds. 

2.We shall now imestigate the behaviour of the oscillation frequencies of system (1.11) when there 
is a change in the sti~ffness and inertia. As was noted above, the extension of Rayleigh's theorem to 
such systems holds provided that the system is statically stable while, when there are no gyroscopic forces, 
this assumption is urmecessary. This is associated with the fact that, when G = 0, all the frequencies 
are of the first kind. 

Actually, on taking account of the fact that, here, Cxk = to2Mxk, pg = itokMXk and M > 0, we find 

1~ := (Ay k ,Yk ) / to~ = [(Cx k ,x k ) + ( M-Ip~., Pt~ )]/tot~ = 2tok (Mxk ,xk ) >. 0 (2.1) 

The following theorem establishes the numbers of frequencies nl and n 2 of the first and second kinds 
of the Hamiltonian system (1.6) with a non-singular matrixA. We note that existing results of this type 
(due to Kovalenko and Krein [11]) refer to a stable system (the total number of frequencies of which 
s = n) and amount to the following: the number r of positive eigenvalues of the matrixA is even, nl = 
r/2 and  n 2 = n - n 1. 

By virtue of the Eanmetry of the matrix A its eigenvalues are real and, since det A ~ 0, 2n - r 
eigenvalues are negative. 

Theorem 1. The number of oscillation frequencies of system (1.6) satisfies the inequality s t> I r - n I 
and the quantity s - Ir - nl is even: (s + r - n ) /2  frequencies are of the first k ind  and  (s - r + n) /2  
frequencies are of the second kind. 

Proof. We know [10] that non-singular matrices S and D exist such that 
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J = S r j ' S ,  A = D r A ' D  (2.2) 

where J is any non-singular matrix which has the same number of positive, negative and zero eigenvalues 
as A. The superscript T denotes transposition. 

Using (2.2), the substitution y = Sz reduces (16) to the form 

J ' z = R r A ' R z ,  R = D S  (2.3) 

We shall assunie that 

IL ° '11 ,24, J '=d iag ( J ,  ..... J2), J2 = I 0 

and that A'  is a diagonal matrix with elements 1 and -1, the total number of which are equal to r and 
2n - r, respectively. 

We connect the matrix R by a continuous curve with the unit matrix I2n, that is, we put R = R(e), 
where R ( e )  is a non-singular matrix such that R(0) = I2,, R(1) = R. When e = 0, system (2.3) splits 
into n systems of the form 

= z k (2.5) 
bk 

where a k and bk take the values 1 and -1. I f a  k = b k = 1 or a k = b k - 1, then a frequency to k = 1 of the 
first or second kind, respectively, corresponds to Eq. (2.5), otherwise, the roots of the characteristic 
equation are equal to __. 1. It is obvious that the minimum number of pairs ak = bk is equal to I r - nl 
and that the corresponding frequencies are of the first (r > n) or second (r < n) kind. 

Assuming that, when e = 0, the number of frequencies is equal to I r - nl, we now consider the 
behaviour of the system when the parameter e increases in the interval [0, 1]. Since system (2.3) is 
canonical, a root --%,(e) + itt~(e) exists together with the root o~o(e) + ion(e) .  Hence, multiple roots 
can only converge with the imaginary axis and then certainly remain on the axis if the corresponding 

T • frequencies are of the first kind [13]. Since the matrix R (e)A R(e) is non-singular, tOk(e) ~ 0 and the 
number of frequencies therefore does not change until a certain value of o~,(e) vanishes. In this case, 
a double frequency (or, in the general case, a 2m-degenerate frequency) "consisting" of an equal number 
of frequencies of the first and second kind appears. When e increases further, these frequencies diverge, 
generally speaking. In a similar way, only imaginary roots which correspond to frequencies of a different 
kind can converge with the imaginary axis after meeting it. It follows from these considerations that 
the number of frequencies s cannot be less than I r - n I and the number of additional frequencies s - 
[ r -  n I is odd. Moreover, half of these are of the first kind and half are of the second kind. Consequently, 
the number of frequencies of the first and second kinds is equal to (s + r - n ) /2  and (s - r + n)/2.  T h e  
theorem is proved. 

Taking into account the fact that s ~ n for even r and s ~< n - 1 for odd r, we find that the number 
of frequencies of the first and second kinds satisfies the inequalities 

r - n < < - n ~ < [ r l 2 ] ,  n - r < ~ n 2 < ~ [ ( 2 n - r ) 1 2 ]  (2.6) 

where [a] is the integer part of a. 
It can be seen from the proof that the theorem also holds in the case of a non-singular complex- 

valued Hermitian matrixA. 
We shall illustrate the theorem using the example of the gyroscopic system (1.1). Since M > 0, the 

number of positive eigenvalues of the matrixA is equal to r = n + r0, where r0 is the number of positive 
eigenvalues of the matrix C. Consequently, of the s frequencies of system (1.1), (s + r0)/2 are of the 
first kind and (s - r0)/2 are of the second kind. In accordance with formula (1.9), when the matrix A 
increases (that is, when C increases and M decreases) (s + r0)/2 frequencies of system (1.1) increase 
and (s - r0)/2 frequencies decrease. We note that the vectors Xk and Pk = io~kMXk are non-zero vectors 
and, therefore, the indicated change in the frequencies also holds if only matrix C or matrix M changes. 

The following condition for Rayleigh's theorem to hold in the case of system (1.1) ensues from the 
result obtained. 
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Corollary. Rayleigh's theorem only holds for a gyroscopic system when the number of its frequencies 
is equal to the number of frequencies of the system when there are no gyroscopic forces acting. 

This condition is certainly satisfied if the system is statically stable (C > 0, s = r0 = n) and, also, if 
the degree of instability (the number of negative eigenvalues of the matrix C) is equal to one (here, s 
=r0 = n - l ) .  

We shall now assume that the matrix C (and, consequently, the corresponding matrixA) is singular. 
The number of zero roots of the characteristic equation is independent of the matrices M and G and 
is equal to the number I of zero eigenvalues of the matrix C. Hence, as G increases from zero up 
to the specified value, the frequencies tOk(e ) do not vanish. Therefore, the arguments used in the 
proof of the theorem remain the same. Allowing for the fact that the matrix A has n + r0 positive 
and n - r0 - l negative eigenvalues, it is possible to calculate the minimum and maximum number 
of pairs ak = bk ~ 0 and thereby find the lower and upper limits of the number of frequencies of the 
system 

ro < ~ s < ~ [ ( n + r o ) 1 2 l + [ ( n - r o - I ) / 2 l  (2.7) 

Here, as in the case of a non-singular matrix C, there are (s + r0)/2 frequencies of the first kind and 
(s - r0)/2 frequencies of the second kind. 

When the matrix C increases, the zero eigenvalues become positive and the number of frequencies 
therefore increases by I and, moreover, they are all of the first kind. 

3. We shall now consider the gyroscopic system with dissipative forces 

M x  + l.tFx + Gx  + Cx = O (3.1) 

where F is a symmetric, positive definite matrix and g is a small parameter. 
We shall assume that the system is statically unstable. When G = 0, the number of roots of Eq. (1.4) 

with a positive real part (and, consequently, the number of solutions that increase without limit) is equal 
to the degree of instability n - r0. If the latter is even, then, for certain gyroscopic forces, the system 
becomes stable. However, by Thomson and Tait's fourth theorem [6], the introduction of dissipative 
forces, which can be as small as desired, destroys this stability. Naturally, the degree of instability of 
the resulting system is determined by the number of roots of the characteristic equation with a positive 
real part. The following theorem shows that this quantity is independent of the actual form of the 
dissipative forces and is equal to the degree of static instability. 

Theorem.  When small dissipative forces are introduced, the degree of instability of a gyroscopically 
stabilized system becomes equal to n - r o. 

Proof. Since, according to our assumption, the system is stable when g = 0, all the roots of the 
characteristic equation (1.2) are imaginary and, in the case of multiple roots, simple elementary divisors 
correspond to them. 

Substitution of (1.7) reduces Eq. (3.1) to the form 

=ll ° 0 0 

(J and A are determined using formulae (1.8)). 
Let Yk = [xk, itokMx~:] be the eigenvector which corresponds to the root itok. Formula (1.9) also holds 

in the case of the asymrnetric matrixAb and therefore 

a~ k (g) / dp.[~=o = -tok (Fxk, xk ) / lk 

Since F > 0, this quantity is positive if the frequency t~ k is of the second kind (lk < 0). Allowing for 
the fact that the roots of F_,q. (3.1) are complex conjugates, we find that, for small g, the number of 
roots with a positive real part is equal to twice the number of frequencies of the second kind, that is, 
n - r0 (s = n in a gyroscopically stabilized system). The theorem is proved. 

It can be seen from the proof that the introduction of small dissipative forces increases the degree 
of instability by an amount s - r0 equal to the number of additional frequencies. Hence, in the general 
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case (s ~ n), the degree of  instability of  a gyroscopic system with a singular matrix C when there are 
small dissipative forces is equal to the degree of static instability. 
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